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The stability of small travelling-wave disturbances in the flow over a flat plate is 
discussed. An iterative method is used to generate an asymptotic series solution 
in inverse powers of the Reynolds number R, = UX/Y  to the power one half. 
The neutral-stability boundaries given by the first two terms of this series are 
obtained and compared with experimental data. It is shown that the parallel 
flow approximation leads to a valid solution at  very large Reynolds numbers. 

1. Introduction 
The prediction of the stability of a given flow and the subsequent amplification 

of any small disturbance has been of continuing interest to the fluid dynamicist 
for nearly a century. The initial stages of development of any disturbance are 
described by a set of perturbation equations derived from the Navier-Stokes 
equations by linearization. Any general perturbation can be split into normal 
modes and the flow is deemed to be stable or unstable depending on the behaviour 
of the least stable mode. Thus, in general, the determination of the stability of 
a given flow requires the evaluation of the eigenva.lues of a set of partial differ- 
ential equations. In  some cases, where the mean flow field is defined as a function 
of only one spatial variable, the set of partial differential equations defining the 
perturbation is separable, and the problem reduces to that of solving a set of 
ordinary differential equations. Plane Poiseuille flow is such an example. In  many 
practical cases, where the mean flows do not exactly fall within the above category, 
the dependence on a second variable is weak and the approximation is commonly 
made that the stability characteristics are related in some sense to those of the 
equivalent one-dimensional system. Boundary layers are examples of this type : 
the mean flows are almost one-dimensional and their stability characteristics are 
invariably determined by making the approximation that the flow i s  parallel 
over some region. The relevant perturbation equations then separate and the 
ordinary differential equation obtained is known as the Orr-Sommerfeld equa- 
tion. This equation applies strictly to disturbances in real parallel flows, but it 
has also been used to describe the wave systems in other flows such as jets and 
wakes, which are nearly paralIel. In the case of the flat-plate boundary layer this 
approach appears to be a reasonable one, since the terms neglected are of order 
R;* smaller than those retained (Pretsch 1941), but there has been no formal 
justification for using this approximation. 
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The difficulty in correctly formulating the stability problem for slightly non- 
parallel flows has led to most of the significant theoretical effort being directed 
towards genuine parallel flows. It is, however, much simpler to experiment on 
boundary layers, for which, not surprisingly, most detailed experimental data 
exist. 

The instability of boundary-layer flow was theoretically demonstrated by 
Tollmien (1929) and Schlichting (1933) using the parallel mean flow approxima- 
tion. They predicted a critical value of the boundary-layer Reynolds number 
above which travelling-wave disturbances grew. These results were derived from 
rather approximate asymptotic solutions of the Orr-Sommerfeld equation, valid 
only at high Reynolds number. Partly because of the number and the nature of the 
approximations used to reach the final results, and partly because there was at  
that time no supporting experimental evidence, these results were received with 
a certain degree of scepticism. 

Schubauer & Skramstad (1948) carried out a remarkable series of experiments 
on the flat-plate boundary layer t o  study these waves. Having reduced the free- 
stream turbulence in the wind tunnel to a very low level they were able to detect 
irregular travelling waves in the boundary layer within the predicted frequency 
band. They also showed that these disturbances amplified in the manner pre- 
dicted by theory. The use of a wave maker, in the form of a vibrating ribbon, 
allowed detailed measurements on these travelling waves to be made. These 
artificially excited regular waves exhibited characteristics remarkably close to 
those predicted by the theory, and the agreement with the quasi-parallel flow 
treatment was sufficiently good to establish the theory as capable of describing 
the unstable waves which arise in the initial stages of transition. 

For a parallel mean flow defined by u(y) the appropriate perturbation stream 
function is 

where a, the wavenumber, is generally taken to be real and p = pr+ip i ,  the 
frequency parameter, is complex. A positive value of pi is taken to denote insta- 
bility to the perturbation. Schlichting used the parallel mean flow approximation 
for the flat-plate boundary layer and obtained the eigenvalues a and /3 and the 
eigenfunction $(y) for a range of Reynolds numbers R. The Reynolds number 
occurs in the Orr-Sommerfeld equation as a parameter. From the information 
on the local growth rate, he suggested that the overall amplification of a disturb- 
ance of a fixed frequency was given by the integral 

$(x, y, t )  = $(y) exp i ( @ X  -PtL 

The factor 2pr/2a appearing in (1)  was used to relate the spatial growth in the 
physical situation to the temporal growth employed in the theory. In  fact, a 
better description of the behaviour of regular periodic waves is given by the 
spatial modes, for which CL is treated as complex and /3 as real (see Gaster 1965). 
The growth of these waves is given by 

5 1  -Ize ai(x) dx. (2) 
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In the case of weakly amplified or damped waves it has been shown that (1) 
and (2) are equivalent (Gaster 1962). Schubauer & Skramstad chose to relate the 
measured growth with theory by obtaining the amplification from 

where /3,,Ia is the phase velocity. The phase velocity differs from the group 
velocity by a maximum of about 20 % for flat-plate boundary-layer modes. The 
differences between the relations (l) ,  (2) and (3) are less significant than errors 
introduced by using eigenvalues obtained from the asymptotic solutions of the 
Orr-Sommerfeld equation. 

The general concept of an instability and the physics of the processes involved 
in its evolution can well be discussed within the framework of the parallel flow 
approximation, but detailed comparison with experiment cannot be made in 
a meaningful way to the necessary degree of precision. Solutions of the Orr- 
Sommerfeld equations can now be found to considerable accuracy by direct 
numerical integration. The more critical comparison with experiment which is 
now possible demands a clearer statement as to precisely how solutions for the 
locally parallel flow can be incorporated into a consistent theory describing the 
behaviour of waves over large regions of a real growing boundary layer. 

In some recent work on wave packets (Gaster & Grant 1974) it was necessary 
to obtain a theoretical estimate of the phase as well as the amplitude for each 
travelling wave mode. The stream function chosen to define these waves was of 
the form 

where a and $ were evaluated locally from the Orr-Sommerfeld equation as 
functions of x .  It was felt that the factor A should also be incorporated in the 
description of these waves to take some account of the variations of the wave- 
number and eigenfunction with x. I n  cases where such variations are extremely 
slow (large R),  it  is perhaps reasonable to neglect any such weak algebraic term 
and accept the limiting form with constant A .  Some additional type of conserva- 
tion relation, such as wave action, enables A(x)  to be determined. Such techniques 
are commonly used in reducing a partial differential equation which has a weak 
dependence on one variable to an ordinary one. Integral methods used in calcu- 
lating steady laminar boundary layers are often of this type: the ‘local’ solutions 
give good estimates of the shape of the velocity profile, but quantities like the 
momentum thickness which are controlled by the history of the boundary-layer 
development require an additional scaling parameter obtained from conservation 
relations like the momentum integral equation. 

Here an attempt is made to generate a sequence of terms for the stream 
function of a periodic travelling-wave disturbance in a growing boundary 
layer. A direct perturbation expansion in some small parameter characterizing 
the mean flow divergence seems to be the most direct approach. For the 
boundary-layer problem an appropriate small parameter is R-4. There are, how- 
ever, two length scales in the problem related to this parameter: in addition to the 
co-ordinate stretching scale arising from the boundary-layer development, there 

9+ = 4 x 1  +(Y, x) exp i{J 44 0% - Pt] 9 (4) 
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is also the length scale associated with the viscous inner and critical layers of the 
Orr-Sommerfeld solution. Bouthier (1972, 1973) has applied the method of 
multiple scales to the boundary-layer problem by artificially separating out the 
small parameter controlling the distortion of the co-ordinates from the viscous 
term in the equations of motion. This procedure may be dangerous since no 
account of the vertical structure of the Orr-Sommerfeld solutions is taken in 
ordering the terms in the expansion. In regions where the viscous terms dominate, 
differentiation in the normal direction raises the order of a term by R;, and 
multiple operations may make it necessary to consider additional terms in the 
expansion. A similar expansion scheme which neglects the vertical structure has 
also been used by Ling & Reynolds (1973) to obtain estimates of changes in wave- 
length and amplification rate for a number of slowly varying flows, including the 
boundary layer on a flat plate. 

Unless the two small parameters which arise in the above treatment are 
separated artificially the expansion process has to be carried out separately in 
the various layers. These matched expansions presumably lead to an asymptotic 
series solution, the leading term of which is the asymptotic solution of the Orr- 
Sommerfeld equation. Since these basic solutions are poor at the moderate 
Reynolds number associated with boundary-layer instabilities, this method does 
not seem promising. A more direct approach, which is used here, is to employ an 
iteration scheme to develop the series. The parallel flow approximation yields 
a suitable trial solution and successive correction terms lead to a series in 
descending powers of RJ. 

2. Analysis 
Some initial disturbance is assumed to exist at  a station xo and solutions are 

sought for x > xo, where x/xo- 1 is not necessarily small. It is convenient to 
choose new co-ordinates (5,s) t o  rescale the problem so that the domain over 
which the solution is sought is a rectangle with sides of order unity. 

where U is the free-stream velocity, v the kinematic viscosity and R = Uxo/u the 
Reynolds number at xo. At this stage it is convenient to assume that the mean 
flow stream function $ is known and that it is a smooth function of k and rj 
throughout the region where the behaviour of the disturbance is to be evaluated. 

The disturbed flow, like the undisturbed steady flow, must obey the appro- 
priate governing equations: the Navier-Stokes equations. Since the superimposed 
disturbance is assumed to be small these equations may be linearized with respect 
to the perturbation 9, and after subtracting out the mean flow terms the partial 
differential equation L,[9] = 0 is formed. L,[ 1, the linearized Navier-Stokes 
operator appropriate to the mean flow $, defines the behaviour of the perturba- 
tion. [This operator is defined in appendix A, equation (A I).] 

Partial differential equations are generally only amenable to analytic solution 
if a co-ordinate system can be found which enables the operator to be separated. 
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The operator Ll[ 3 does not separate unless certain terms are ignored. These terms 
are of order R;* and are suitably small in problems concerned with boundary- 
layer instability (Pretsch 1941). An approximate solution can thus be found with 
the wavenumber a, as the separation parameter, remaining a weak function of <. 
Such a solution is 

$0 = 4.5) $0(.5, 7) eQ, (6) 

with 

where $o satisfies the Orr-Sommerfeld equation L2[$,] = 0, which is defined in 
appendix A. It is convenient to incorporate the term t-3 in the spatial scale so 
that the parameter a(<) defines the wavelength in terms of the local boundary- 
layer thickness. do is normalized in some way convenient for the calculation 
scheme and A(C) provides the necessary scaling. A is an arbitrary weak function 
of c at this level of approximation. 

The above approximation to the disturbance stream function can be used as 
a trial solution in an iterative scheme to generate a series solution. The approxi- 
mation which was used to obtain this trial solution is essentially that of replacing 
the operator Ll[eQ 1, which does not separate, by the form eQL2[ 1, which does. 
The terms neglected are O(R;*), but it does not seem necessary at this stage to 
justify this statement fully, although this can be accomplished by combining (6) 
with (A 1) and (A 2), and comparing the result with the Orr-Sommerfeld equa- 
tion. The test of whether or not this approximation is a good one is revealed by 
the usefulness of the h a 1  series in representing the required solution of the 
equations of motion. 

The trial solution (6) is, in fact, an exact solution of the approximation 
eQL2[$] = 0, with the function A ( [ )  undefined. @o does not, of course, satisfy the 
full equations and a correction term is added: 

9 = [A$o + 4 1  eQ. (7) 

Since the approximation used in deriving (6) neglects terms of order R-3 it 
may be anticipated that E will be equal to this small parameter, but this will 
emerge naturally in the iteration process. 

It is desired to solve 
L,[$1 = 0- 

From (7) this is L,[A$,eQ] = - &,re& 941. (8) 

On replacing the right-hand side by the approximate form eQL,[$,], and 
noting that L2[$,] = 0, it is clear that the left-hand side reduces to the difference 
between the exact and the approximate forms of the operator acting on $o. These 
difference terms are O(R-:) and putting E = R-3 (8) reduces to 

The coefficients F!, F' and F4 are small (of order R-l or smaller) compared with Fo 
and Fl, and the initial trial solution is therefore modified by an amplitude function 
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dominated by the first two terms. Use of the adjoint function @(& 7) enables the 
solubility condition 

to be applied (see Stuart 1960). The amplitude function is given by the ordinary 
differential equation 

or 

m 

0 
where cj = / q @ d y  for j = 0 ,1 ,2 ,3 ,4 .  

G2, G3 and G,  are small and the significant slow root can be extracted. The itera- 
tive process can only be expected to yield a useful result when the development 
of the mean flow is slow and the correction to the zero-order parallel flow solution 
is small. It was assumed at  the outset that the amplitude function A(6) was a slow 
function of 6, and roots involving large derivatives of A ( [ )  are thus not consistent 
with this assumption and do not relate to valid solutions of the problem under 
consideration. At any station 6, the left-hand side of (9) is known and can, in 
principle at least, be evaluated from the inhomogeneous Orr-Sommerfeld equa- 
tion. Further terms in the series can then be found by evaluating successive 
correction terms in descending powers of R3. In  many practical examples R will 
be sufficiently large for the behaviour of the disturbance to be described 
adequately by the leading term, namely A([ )  c#oeQ. In  this case there is no virtue 
in evaluating Fo, Fl, etc. further than O ( R d ) ,  and we find on neglecting F2, F3 and 
F4 that (1  1) reduces to 

A-ldA/d( = - 6,/6,, (12) 

where the caret implies evaluation to order R-3. 

[ > 1 from (12). 
The first correction to the parallel flow solution A ( [ )  can be obtained for all 

3. Comparison between theory and experiment 
In  parallel flows the eigenfunction $(r) is independent of the streamwise 

station [, and the exponential part of the perturbation stream function uniquely 
defines the wavelength and amplification rate. The behaviour of any unsteady 
physical quantity along any path 7 = constant is governed by this exponent. 
The controlling parameters for non-parallel flow are, however, not uniquely 
defined in this way and rather greater care is required when comparing theory 
with experiment, even in weakly non-parallel flow situations. The eigenfunction 
changes slowly with the streamwise station and estimates of the wavelength and 
amplification therefore depend, to a small extent, on how these quantities are 
defined. 
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Experimental studies of instability waves rely almost exclusively on measure- 
ments made with hot-wire anemometers. Simple hot-wire elements detect the 
streamwise component u of the fluctuations. The behaviour of u as a function of 
streamwise station is generally used to define stability. Measured values of the 
exponent depend on the height of the probe above the surface. I n  addition, 
different estimates are obtained by traversing the probe downstream either a t  
a constant physical distance y from the boundary, or a t  a constant non- 
dimensional distance 7. Schubauer chose to measure amplification with a probe 
at a fixed distance from the plate a t  some position below the point of maximum 
velocity fluctuations. He suggested that amplification rates measured there 
would be reduced slightly from the ‘true’ value by the effect of the boundary- 
layer growth and the associated outward movement of the velocity maximum. 

Ross et al. (1970) were also well aware of these difficulties in making meaningful 
comparisons between theoretical and experimental amplification rates. Their 
measurements were taken with the hot wire at a constant non-dimensional dis- 
tance from the surface and corrections based on theoretical eigenfunctions were 
applied to compensate for errors introduced through variations in the eigen- 
function shape with Reynolds number. 

The various methods of defining the growth rate lead to results differing by 
amounts of order R-9. Since the parallel flow approximation neglects terms of 
this order it would be inconsistent to attempt to improve on the simple measure a! 
for calculating the amplification rate and wavenumber. Although agreement 
between theory and experiment may be apparently improved by making a parti- 
cular choice of probe height and method of correction for changes in the eigen- 
function, this is a highly illusory result. The agreement between theory based on 
the Orr-Sommerfeld model and experiment cannot be better than O(R-4). It is, 
however, essential to take due account of the above factors if full advantage is to 
be realized from any higher-order theoretical treatment such as that presented 
in this paper. 

The perturbation stream function arises as a series in R-4: 

where primes denote differentiation with respect to 7. The relative rate of change 
of the u component is 

The leading term is the wavenumber, which arises solely from the Orr- 
Sommerfeld approximation, while the terms in the group next in order of 
importance arise through the amplitude function, the eigenvalue modification 
with Reynolds number and the co-ordinate system respectively. The imaginary 
part of (14) gives the wavenumber correct to O(R-+), and the real part gives the 
amplification rate. 
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The neutral curve is defined by 

for the IuI component of velocity. Similar relations can be generated for other 
quantities such as IvI or the local kinetic energy u2+v2, which has been used 
by Bouthier. For any particular experiment the appropriate neutral curve can 
be calculated from some relationship like (15) and valid comparisons made. It 
would be convenient to use some integral parameter, such as kinetic energy for 
example, to characterize the stability and thus remove any ambiguity in the 
definition of the neutral curve. Although the kinetic-energy integral is a physi- 
cally meaningful parameter, it  is a quantity that is difficult to measure. A more 
useful parameter for defining amplification is the integral of 2 across the flow. 
Other possible definitions are given by the values of the growth of ( 2 ) B  at either 
of the two maxima in 7. 

Bouthier chose to define the amplification rate using the growth of the local 
kinetic energy u2+vz. He obtained the lowest Reynolds number where the 
amplification first reached zero and an upper limit where the growth was positive 
a t  every point through the boundary layer. 

Neutral loops are obtained here for various parameters using the first-order 
correction terms to solutions of the Orr-Sommerfeld equation. 

The quantities chosen to define amplification are as follows. 
(a )  The kinetic-energy integral: 

- -  

- -  

E =Jaw (,u2 - + - v2) dy, 

where e = Jow [$;,&I + “~54l601~7~ 

(b )  The integral of 2: 
n 

where 

(c) The u component: 

where (5/&) aq&/a&- is evaluated a t  (i) the point where (uI is a maximum, (ii) the 
point where IuI is a minimum, (iii) the station 7 = 0-08, which is approximately 
y/8 = 0.15, the position used by Ross et al. for their experiments, and (iv) fixed 
values of y below the point of maximum u for comparison with measurements of 
Schubauer & Skramstad. 
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4. Computation 
It was necessary to solve the On-Sommerfeld equation to obtain the required 

information for calculating the functions Go and G,. A shooting technique was 
used with a Runge-Kutta integration combined with Kaplan filtering to remove 
the spurious divergent mode from the solution. The computation was carried out 
on a KDP9 which holds real numbers to 48 bits (11 decimal digits). The integra- 
tion range was split into two: 20 steps were used in the range 0 < 7 < 2 and 
40 steps for 2 < 7 < 8. The eigenvalues obtained agreed with those given by 
Jordinson (1970) to O(10-5). The eigenfunction and its derivatives as well as the 
adjoint functions were calculated and stored on magnetic tape for a range of 
Reynolds numbers and non-dimensional frequencies (P = P/RB). This informa- 
tion was then used to evaluate o0 and 6,) and hence the various amplification 
contours. 

5. Results 
The various amplification rates defined in 5 3 were obtained numerically using 

(12) and (A 6) for a range of Reynolds numbers and frequency parameters. These 
were used to find the neutral boundaries which separate the stable from the 
unstable domain in the F ,  R plane. Figure 1 compares the neutral curves based on 
integral quantities a(a) and a@). The loop based on energy flux lies outside that 
given by ai = 0 and furthermore values of the amplification rate within the 
unstable zone exceed the parallel flow values. For the energy flux, therefore, the 
growth of the boundary layer leads to a reduction of stability. This arises partly 
because the energy integral contains the boundary-layer thickness, which 
increases like xi. The neutral curve based on the integral of the u component 
squared, which does not contain this factor, shows quite close agreement with 
the Orr-Sommerfeld neutral loop. 

These integral parameters are not the most convenient measures of amplifica- 
tion as far as the experimenter is concerned; simpler direct estimates are given 
by the u component of the fluctuations at  selected stations in the boundary layer. 
The root-mean-square value of u has two maxima, one large peak close to the wall 
and a weaker second peak at  the outer edge of the boundary layer. The large inner 
maximum has been suggested as suitable for amplification measurements (Ross 
etal. 1970)) but the outer one should also be considered as a possible station since 
this maximum is somewhat flatter and its position does not have to be defined 
quite so precisely. Neutral loops based on these two particular stations are shown 
on figure 2. Schubauer & Skramstad made their measurements a t  some unspeci- 
fied position below the inner maximum and these are plotted on figure 3 
with the theoretical neutral curve calculated for a position halfway between the 
wall and the peak. Figure 4 shows the experimental data given by Ross et al. 
(1970) together with the appropriate theoretical curve for y/6 = 0.15. 
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FIGURE 1. Neutral amplification curves based on integral parameters. -, ai = 0, for 
parallel flow ; ---, a[a) = 0, the kinetic energy ; - * - , a@) = 0, the integral of ;A. 
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FIGURE 2. Neutral loops based on the points of maximum IuI. --, a, = 0, for parallel 

flow; ---, a(c) = 0, for inner maximum; , dC) = 0, for outer peak, 
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FIGURE 3. Comparison with data of Schubauer & Skramstad. 

6. Discussion 
The Orr-Sommerfeld parallel flow solution has been used as a zero-order 

approximation to the full equations of motion and a correction in the form of an 
amplitude scaling function has been found together with an inhomogeneous 
equation for the first correction to the eigenfunction. This equation has not been 
solved and thus the overall motion has only been obtained to zero order. Never- 
theless, the amplification rate and wavelength, which only require knowledge of 
the disturbance to lowest order, are given to order R-4. The equation defining the 
amplitude function to this order is identical to that given by Bouthier. The way 
the eigenfunctions are normalized does not influence the solution since the 
amplitude equation effectively contains this information. 

The figures showing the stability boundaries for different parameters clearly 
demonstrate the need for care when comparing observations with theoretical 
predictions. The various amplification rates differ from the parallel flow value 
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Reynolds number, U6*/v 
FIGURE 4. Comparison of theory with data of Ross et al. 

by amounts of order R-4 and this is significant near the critical Reynolds number. 
Figures 3 and 4 compare experimental data with the present first-order theory 
for the ZL component at  positions appropriate to the experiments, In  both 
examples agreement between experiment and theory has been improved by the 
first-order correction to the amplification, but the high frequency/low Reynolds 
number points are not explained. Bouthier compared the same data with his 
theoretical neutral curve based on the local energy flux and achieved remarkable 
agreement. It is not at all obvious why this correlation is so strong. Ling & 
Reynolds found almost no influence of boundary-layer growth on the neutral 
curve, but it is not clear to what parameter the calculated amplification factors 
refer. It appears that the corrections to the wavenumber that were calculated 
refer to the contribution from the amplitude equation, but this quantity depends 
on the normalization used and by itself is insufficient to define the behaviour of 
the instability to the necessary order. 

Both the method of direct expansion and of successive approximation can be 
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continued to yield higher terms of the series expansion for the perturbation 
stream function. If the mean flow is assumed to be given solely by the boundary- 
layer approximation (only one term in the series for 3) Bouthier’s multiple-scale 
expansion appears to be particularly direct, successive terms of the series being 
generated by the same basic ordinary differential operator. Since the solution at 
any streamwise location is controlled by local values of the coefficients of this 
operator, the behaviour is parabolic, like the zero-order term arising from the 
Orr-Sommerfeld equation. Although the full equations of motion are elliptic, it is 
interesting to note that the series solution retains this parabolic character to 
arbitrary order. Of course the mean flow cannot be defined solely by the 
boundary-layer equations and the above expansion procedure can only be 
extended by one further term before other mean flow terms arise in the equations 
and destroy the simplicity of the process. Nevertheless, a study of the first few 
terms of such a series for the disturbance stream function, generated in a purely 
‘ boundary-layer ’ mean flow, would be useful in establishing the behaviour of 
the series, and might offer some guidance concerning the accuracy of any 
resulting partial sum. 

Extension of the iterative method to higher order, even in the somewhat 
artificial case of a ‘ boundary-layer ’ mean flow, leads to solutions with rather 
different characteristics. The amplitude equation ( 11)  contains some algebraically 
weak terms of second and higher order. These may be neglected up to the second 
iteration, but they have to be taken into account when higher terms are being 
evaluated. The resulting higher-order differential equation for the amplitude 
function requires additional boundary conditions to define the constants of 
integration. These derivatives arise from the biharmonic part of the Navier- 
Stokes equations and are connected with its elliptic character. The iterative 
series solution exhibits parabolic behaviour up to second order, after which 
elliptic characteristics become evident. It seems likely that the indeterminacy of 
the higher-order terms of the series arises from some inadequacy in posing the 
problem. If the evaluation of the perturbation was being attempted over the 
whole field, by say a finite-difference scheme, it would be necessary to specify 
sufficient boundary conditions around the perimeter of the domain, and in the 
situation being discussed here values downstream would be required. This 
information is not available and the elliptic nature of the full equations prevents 
a solution being obtained to higher than second order by the iterative procedure. 
Since the method of multiple scales can apparently overcome this difficulty, it 
may in some way filter out that part of the solution which is purely parabolic, but 
it is not certain whether this result is physically meaningful. In the case of the 
stability of the flow over a flat plate sufficiently accurate solutions are given by 
the first two terms of the series and in practice the difficulties discussed above do 
not arise. In the case of a finite flat plate the mean flow stream function contains 
terms of order one, which are identically zero for the semi-infkite plate, and the 
functions 6, and 6, will be modified. No assessment has been made of these 
effects, but it is felt that in practice a long enough plate will produce only a very 
weak deviation from boundary-layer behaviour and intuitively it is believed that 
the result given in appendix A will be adequate to define the solution. 
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It may be anticipated that the solution generated by the iterative scheme 
would consist of a series of terms such that the nth term is of order en, where E is 
some suitable small parameter defining any departure of the mean flow from a 
two-dimensional structure. The terms can thus be expected initially to decrease in 
magnitude, although a t  some stage the coefficients may become so large that the 
series diverges. An approximate solution is obtained by truncating the series a t  the 
smallest term, the error being related to the first term neglected. In  the boundary- 
layer problem the small parameter is R-&. Since this quantity has a numerical 
value of around 300 near the critical Reynolds number, we can expect the solution 
obtained here to be sufficiently accurate. In  more general flows where it is not 
possible to generate analytical expressions for the mean flow it probably will be 
impossible to define a simple small parameter. However, if the mean flow is 
defined, say numerically, it is quite feasible to generate a series by the iteration 
process. The numerical values of the terms of this series will offer some guide as 
to whether or not the series represents a useful solution. It seems likely that 
moderate deviations of the mean flow can be adequately treated and that the 
first correction t o  the parallel flow solution would often suffice. In  situations of 
rapid mean flow distortion it can be expected that the iteratively generated series 
will diverge and the ‘short wavelength ’ approximation will no longer be appro- 
priate. A ‘long wavelength’ treatment must be sought, where the behaviour of 
the disturbance is controlled by some integrated property of the mean flow and 
is not directly influenced by rapid local distortions. 

The author wishes to acknowledge a number of helpful discussions at Imperial 
College with Professor J. T. Stuart, Dr M. A. Weissman and Dr P. M. Eagles. 

Appendix A 
The linear Navier-Stokes operator for a mean flow stream function 3 is 

(A 1) 
av2 a$av2 av2$ a aFav= av2$ a vv4. L,[ ] = -+--+ --------_ 
at ay ax ax ay ax ay ay ax 

For the semi-infinite flat plate the stream function of the mean flow can be 
obtained as a series in the form 

- 
$ = V@R+f(7)  + 0 x O( 1) + O(Rt), (A 2) 

f” + iff’’ = 0. (A 3) 

AeQL2[$] + 0 (A 4) 

where f(7) is the ‘ boundary-layer ’ solution given by the Blasius equation 

The result of operating on A$(<, 7) eQ and (A 2) by (A 1) can be written in the form 

in terms of the co-ordinates 7 and 6, using the relations 

a u a  

L2[$] = (iU4/v3R~p~){(af’--p) ($”-a2$) -af!’’$ -i$*v/R&@}, 
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and 0, a function completely specified in terms off, 4, G and A ,  contains terms 
with coefficients R-8, R-I, etc. 

The fourth-order viscous term must be included if solutions generated by 
equating L2[$] to zero are to be valid approximations for the full equations of 
motion and the four hydrodynamic boundary conditions. These solutions are 
highly oscillatory in some regions of the flow and differentiation with respect to 7 
increases the relative importance of a term there. Thus even though the viscous 
term contains a factor R-3, the four differentiations with respect to  7 make this 
term dominant close to the boundary and near the ' critical-layer ' singularity, 
which occurs when af ' = P. The ordering of terms, taking the vertical structure 
into account in the above way, is discussed in appendix B. For the purpose of 
generating iterative solutions it is sufficient that 0, the terms neglected in forming 
the first approximation, be significantly smaller than those retained and it is 
immaterial whether or not other small terms are also included in L,. It is, of 
course, essential to include only terms which maintain L2 in an integrable form. 
The complete viscous term vV4$ is generally incorporated in the first-order 
approximation : the Orr-Sommerfeld equation 

(af'-P)(#t'-az#) -olf"c$ = ( ; / R : [ ~ ) { ~ " - 2 a 2 ~ " + a 4 ~ } .  (A 5 )  

The above form was used in the present work. Barry & Ross (1970) included some 
additional terms, which arise from the vertical component of the mean flow. 

To proceed with the iteration it is necessary to evaluate the quantities Fo and FI 
from solutions of (A 5). These functions can be written out in full in terms off, $o 
and Q, and evaluated exactly. However, since it is only intended here to evaluate 
Go and G, to first order, some terms may be neglected. The magnitudes of the 
various terms can be assessed in the sense discussed in appendix B. To order R-4 

and 

Appendix B 
The relative magnitudes of the various terms arising in the expansion for 0 

can be estimated from known properties of the fundamental asymptotic solutions 
of the Orr-Sommerfeld equation (see Lin 1955, p. 34). The equation has two 
slow roots described by the inviscid second-order Rayleigh equation and two 
rapidly oscillating viscous modes which behave like exp [ ? Rig(?)]. I n  the 
boundary-layer case the outer boundary condition requires that the divergent 
viscous mode be discarded. The remaining viscous mode together with the 
inviscid solution must satisfy the wall boundary conditions of zero normal and 
tangential velocity. This requires the ratio of amplitudes t o  be O(R-i) : O( 1) for 
the viscous and inviscid stream functions. Differentiation of the viscous solution 
in the normal direction n times raises its order by Ran and the overall order of 
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magnitude becomes BA(n-l), compared with the inviscid part of the solution. The 
complete perturbation stream function is composed of both viscous and inviscid 
modes. The order of magnitude of a term, qP say, is O( 1) for an inviscid mode and 
O(Rt(n-1)) for a viscous one. 

What is really required here is an estimate of the contribution of any term in 
the integrals Gj, so that only the relevant parts be retained. Since the viscous 
modes are only large in layers of thickness O(R-4) it is appropriate to define the 
magnitude of the contribution from a viscous term as O(Ra(n-2)). The viscous 
component dominates when n > 2. Thus if n < 2 the importance of qP is O(l) ,  
but if n > 2 it is considered to be O(R&(n-2)). Using this criterion it can be shown 
that all the terms retained in (A 6) are greater than O ( R 4 ) .  
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